Skip to content

Performance Optimization

Overview

Optimization techniques and best practices for maximizing jpgx's performance in production environments.

Memory Optimization

Buffer Management

  • Efficient buffer allocation and reuse
  • Memory pooling for frequent operations
  • Buffer size optimization strategies

Garbage Collection

  • Minimizing object creation
  • Proper cleanup of resources
  • Memory leak prevention

Processing Optimization

Encoding Performance

typescript
// Example of optimized encoding
function optimizedEncode(data: any) {
  // Pre-allocate buffer if possible
  const buffer = Buffer.alloc(estimatedSize)

  // Use streaming for large datasets
  if (data.length > threshold) {
    return streamEncode(data)
  }

  return encode(data)
}

Decoding Performance

typescript
// Example of optimized decoding
function optimizedDecode(data: string) {
  // Validate input before processing
  if (!isValidInput(data)) {
    throw new Error('Invalid input')
  }

  // Use appropriate decoding strategy
  return isLargeData(data) ? streamDecode(data) : decode(data)
}

Resource Management

CPU Usage

  • Multi-threading considerations
  • CPU-intensive operation optimization
  • Task scheduling strategies

Memory Usage

  • Memory footprint reduction
  • Efficient data structures
  • Resource cleanup

Best Practices

  1. Use appropriate data structures
  2. Implement proper error handling
  3. Consider using streaming for large datasets
  4. Cache frequently used encoded/decoded data
  5. Monitor memory usage during operations

Released under the MIT License.